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One of the most interesting aspects of the discovery of Microwave Background Radiation 

(MBR) anisotropy by the COBE satellite’ is the ability to compare these anisotropies with the 

amplitude of density inhomogeneities we measure. C~ombining these two,. we can get a “unified” 

view of the inhomogeneities present in our universe on a broad range of scales. To make this 

comparison we must be able to translate AT/T into dp/& the mass overdensity. This latter 

quantity we may try to determine from the distribution of galaxies and their velocities. The 

standard translation, which is often referred to as “the Sachs-Wolfe formula”, is given by 

AT 
-= 

T 
;;f;V’+ = 4xG6p. 

Here + is the gravitational potential perturbation at the last scattering surface, in the direction one 

is measuring T, a is the cosmological scale factor, and ‘7’ is Laplacian w.r.t. comoving coordinates. 

The formulae in Eq. 1 are appropriate for adiabatic perturbations grown by gravitational instability 

in a matter-dominated, flat (ne = l), FRW cosmology on scales much larger than the horizon at last 

scattering. Most discussions of the implications of the COBE results have assumed this formula. 

It is important to realize that the conditions for the validity of Eq. 1 may not be satisfied, and 

that the 6p/p implied by the COBE detection will be different in different scenarios. 

The results of Sachs and Wolfe’ are much more general than Eq. 1, and can easily be de- 

rived from the geod&& equations for photons. Gravitationally induced MBR anisotropies can be 

decomposed’ acco&b%gto which type of metric fluctuations formed them: one of two different 

gravitational potentials, vorticity perturbations, or gravity waves. The cogent features to be dis- 

cussed can be illustrated by consideration of just the potential fluctuations in the case where there 

are no large anisotropic stresses. Then there is just one potential, Cp, which is the same as the 

Newtonian potential. In terms of @ the Sachs-Wolfe integral:is written 

AT 
T 
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where the first term is the radiation density fluctuation at the last scattering surface (w.r.t. the 

Newtonian time slicing), the second term is the usual gravitational redshift, and the last term is 

an integral along the photon path from last-scattering to the observer. When the conditions for 

Eq. 1 are satisfied, dp/p 0: a, and hence @ is constant in time, and therefore the integral in Eq. 2 

does not contribute. For adiabatic perturbations Sp,f& = -i@Ic’ on super-horizon scales and 

one obtains Eq. 1. 

A pojnt which should be stressed is that the standard result, given in Eq. 1, represents 

a high degree of cancellation of the-different terms in Eq. 2. The first term nearly cancels the 

second, and the third term is zero. Most deviations from the requirements for Eq. i will not lead 

to such a fortuitous cancellation, and one will obtain a larger AT/T for a 6xed 6p today. Note 

that the gravitational waves and vertical perturbations we have neglected. can only increase AT/T 

even more. Hence in alternative scenarios, anisotropy measurements on scales larger than 1” (e.g. 

COBE) will probably indicate a smaller Sp than one obtains using Eq. 1. Given the result that 

the COBE measurements have forced the “CDM model” into having a 6p which is uncomfortably 

large when compared with small-scale galaxy clustering’, one might find the lowering-of the ratio 

dp/( AT/T) desirable. 

To make these ideas more concrete, consider the case where there is no perturbation at the 

time of last scattering, after which some of the matter is moved around by non-gravitational forces, 

say in a “late-time phase transition”s, and inhomogeneities in @ result. Thus the first two terms 

of Eq. 2 are zero, but the integral will not be. Since the integral has a factor of 2 multiplying the 

potential, which is 6 times greater than the prefactor in Eq. 1, one can see that it is not difficult to 

find larger AT/T’s J&e, Frieman, and the authors have considered this problem in iome detail. 

We have found that on scales much less than the present horizon, a practical lower limit on AT/T 

comes from growing the potential cc J’u-~& , in which case 

(3) 

where X is the wavelength of the perturbation, A7 is the comoving distance light has traveled 

during the time the potential grows to it final value, @r. The last inequality comes from the 

requirement that An can be no larger than the present horizon (6000 h-‘Mpc). Thus production 

of perturbations at late times can only suppress anisotropies on~small scales (5 3”) and wiy @crease 

them on larger scales. Since it is unlikely that one will produce:the anisotropies in the optimal way, 

it seems likely that one wiU never in practice suppress the AT/T by producing the inhomogeneities 

after last scattering. Note that this is exactly the opposite of what was expected’. 
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A class of models which is similar to the ‘late-time” models are models involving topological 

defects, such as cosmic strings, cosmic textures, and global monopoles. Unlike the late-time models, 

the seeding of inhomogeneities on a given scales occurs roughly when that scale enters the horizon, 

i.e. An z A. Hence for the large scales we are considering, those which enter the horizon after 

last-scattering, we may use Eq. 3 to obtain 

AT fi 

T 
m -@f 
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This estimation is roughly consistent with more detailed calculations7~s*s. (See Ref. 8 for a more 

thorough discussion.) All estimates imply that 6p is smaller than would be predicted by Eq. 1, 

and this result is largely due to the aforementioned factor of six. 

So far it has been argued that 6p might be smaller than is implied by Eq 1. This does not 

necessarily imply that 6p/p is also smaller. One can make 6p/p larger by decreasing ji. This is 

achieved by changing the cosmology. For example in an open, Lemaitre, or “loitering universe”“’ 

AT/T is small for a fixed 6p/p largely because p is small today. 

In summary, this note was meant to clarify the relationship between Sp/p and AT/T by 

stressing the following points: 1) Determining 6p from measurements of MBR anisotropy is model 

dependent, 2) Eq. 1, the standard model, is for most practical purposes an upper limit on the 6p 

one would obtain in other models, 3) for seed models 6p is a few times smaller than the standard 

result, which can be understood in terms of the 2 prefactor in Eq. 2 versus the 5 prefactor in Eq. 1. 
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